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Abstract 

This paper proposes using reinforcement learning (RL) agents enhanced 

with 3D vision-language models (VLMs) to enable sustainable smart homes. 

These agents perceive the 3D layout and objects of a household environment and 

learn to autonomously adjust systems (e.g., HVAC, lighting, appliances) to 

optimize energy use and resource management. We identify specific energy-

saving tasks (such as occupancy-driven thermostat control, efficient lighting and 

blind management) and resource-management tasks (like waste sorting assistance 

and water-use feedback) that such agents can perform. We review recent advances 

in RL and vision-language models, and outline a conceptual framework for 

embodied home agents. Through this synthesis, we demonstrate how RL-powered 

agents can significantly reduce domestic energy consumption and waste, thereby 

supporting eco-friendly lifestyles. We also discuss the potential environmental 

and economic benefits of these systems, as well as technical and social challenges 

to their adoption. The contribution of this work is in articulating “spatial 

adaptation” for sustainability: an RL-driven approach that transforms smart homes 

into proactive, learning environments for green living. 
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Introduction 

Residential buildings are major energy consumers and emitters of 

greenhouse gases (IEA, 2024). For example, operations of buildings account for 

roughly one-third of global energy use (Markowitz & Drenkow, 2024), a large 

fraction of which is due to heating, ventilation, and air conditioning (HVAC) 

systems. In typical homes, HVAC and lighting systems often run inefficiently 

because current controllers lack real-time adaptation to occupancy and 

environmental changes. At the same time, household waste is growing rapidly 

worldwide. One report finds that global per-capita waste averages about 0.74 kg 

per day and can exceed 1.5 kg in high-income countries  (Zhang et al., 2021). 

These trends — rising energy use and waste — pose a severe environmental 

burden. They highlight the urgent need for smarter automation that not only 

provides convenience but also actively reduces resource use and emissions. 

Existing smart home systems tend to follow fixed schedules or simple 

rules (e.g., “turn off lights after 10 PM”), reacting only to explicit commands 

(Markowitz & Drenkow, 2024). This reactive approach misses opportunities for 



savings; for instance, a rule-based thermostat cannot anticipate when a room will 

become occupied or respond optimally to real-time price signals. In contrast, an 

intelligent agent with learning capabilities could continuously adapt to the 

household context. The goal of this research is to explore how such RL-driven 

agents, empowered by rich 3D visual and language understanding, can realize 

sustainable spatial adaptation in homes. Specifically, we ask: 

1. How can RL agents with 3D VLM capabilities adapt spatially 

to optimize sustainability in home environments? 

2. What specific environmental and economic benefits can these 

systems bring to smart domestic ecosystems? 

3. What technological, social, and infrastructural challenges must 

be overcome for widespread adoption? 

To address these questions, we undertake a qualitative, interdisciplinary 

study. We review state-of-the-art literature on reinforcement learning, vision-

language models, and smart home technologies, with an emphasis on 

sustainability. We analyze case studies and simulated platforms (e.g., AI2-THOR, 

Habitat, iGibson) where embodied agents perform household tasks. We compare 

intelligent RL-based strategies with conventional rule-based automation in terms 

of energy and waste reduction. Finally, we synthesize our findings into a 

conceptual framework and outline future research directions. In doing so, we 

identify promising tasks and system designs for “Green AI” in the home, and 

discuss how intelligent agents can become practical contributors to eco-friendly 

living. 

Methodology 

Our approach is qualitative and exploratory. We conducted a 

comprehensive literature survey of academic articles, technical reports, and 

industry white papers on topics including reinforcement learning algorithms, 3D 

vision-language models, and sustainable smart home systems. Special attention 

was given to recent work on AI for energy efficiency and resource management. 

In parallel, we examined existing embodied AI platforms and case studies. For 

example, we reviewed projects using AI2-THOR and Habitat simulators to train 

agents on navigation and object-interaction tasks in virtual homes. We also 

analyzed case studies where RL was applied to building control or home 

automation. Whenever possible, we compared these intelligent approaches to 

traditional rule-based systems, focusing on metrics such as energy usage, task 

success, and adaptability. Finally, we developed a conceptual framework for 

sustainable smart homes. This framework includes design considerations for RL 

agent architectures (see Figure 1) and outlines deployment strategies (e.g., training 

on simulators before real-world transfer) to maximize ecological impact. By 

triangulating these sources — literature, simulation case studies, and comparative 

analysis — we ensured a robust understanding of how RL and 3D VLMs can be 

leveraged for sustainability in home environments. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1. RL + 3D VLM Agent Architecture in Smart Homes (conceptual). The agent 

takes multimodal sensor inputs (e.g., RGB-D camera, microphones, smart meters), processes them 

through a 3D vision-language model to understand the environment, and feeds a spatial 

embedding into an RL policy network. The policy outputs actions (e.g., adjust thermostat, operate 

blinds, sort items), which are executed via home automation actuators. A feedback loop provides 

rewards based on energy savings or resource efficiency, enabling the agent to learn and improve 

its behavior over time.  

 

 

 

 

Figure 2 (conceptual) contrasts traditional rule-based home control with our RL-

based approach. The rule-based system (left) follows fixed input-output mappings 

(e.g., “if motion=0 then lights=off”), lacking adaptability. The RL-based system 

(right) continuously learns from feedback: it perceives the environment with a 3D 

VLM, updates its policy via rewards, and gradually optimizes its actions. This 



learning loop and spatial language grounding enable it to handle novel situations 

that rule-based systems cannot. 

 
 

Literature Review 

Reinforcement Learning and Energy Management 

Reinforcement learning (RL) is a paradigm where agents learn optimal 

policies through trial-and-error interactions with an environment. Classic 

successes include game-playing systems and robotic manipulation, demonstrating 

that RL can handle complex decision-making with sparse rewards. In residential 

applications, RL has shown promise for personalized energy management. Agents 

can learn when and how to operate HVAC, lighting, and other systems to balance 

comfort and efficiency. For example, deep Q-learning and policy-gradient 

methods have been applied to building climate control: agents forecast occupancy 

patterns and external weather to adjust heating/cooling proactively, resulting in 

measurable energy savings without reducing comfort. One study demonstrated 

that an RL-based HVAC controller maintained temperature constraints while 

significantly reducing energy use compared to a standard controller (Schwartz et 

al., 2019). Hierarchical RL approaches, which decompose tasks into sub-goals, 

further improve learning speed and generalization across different home layouts. 

In summary, RL’s core strength — learning from experience — is well-suited to 

dynamic home environments, enabling continuous adaptation to user behavior and 

external conditions. 

 

3D Vision-Language Models and Spatial Perception 

Recent advances in computer vision and language have led to 3D vision-

language models (VLMs) that deeply integrate visual and linguistic information. 

These models process multimodal data — such as RGB images, depth maps, and 

semantic segmentations — along with natural language to produce rich scene 

embeddings. This allows an agent to not only see objects and geometry in 3D 

space but also understand references to them in language. For instance, models 

like CLIP, Flamingo, and BLIP-2 have demonstrated strong zero-shot recognition 

and instruction-following capabilities for household objects and commands. With 

a 3D VLM, an agent can interpret a command like “turn off the lamp in the living 

room” by recognizing the lamp object and its 3D position. In our context, 3D 

VLMs provide the RL agent with a semantically informed map of the home: they 

identify appliances, windows, humans, and even categories like recyclable waste. 

This enriched perception is crucial for sustainable tasks; e.g., the agent needs to 

know which items are on and who is present in which room. Several works have 

leveraged such perception modules for embodied AI. In simulated homes (e.g., 

Habitat, Gibson), VLMs have been used to ground language navigation and object 

manipulation, enabling generalization to unseen objects and layouts. We build on 

this trend by using VLMs to enhance the agent’s spatial reasoning about energy 

and resource contexts. 

 

 



Embodied AI Platforms and Language Grounding 

The development of RL-driven home agents has been accelerated by 

realistic simulators. Platforms like Habitat (Savva et al., CVPR 2019)and AI2-

THOR provide photorealistic 3D environments of houses and apartments, 

complete with interactive objects (lights, appliances, trash bins). In these virtual 

worlds, agents are trained to navigate, manipulate, and fulfill instructions. 

Benchmarks such as the Home Assistant Benchmark Suite (HABS) focus 

explicitly on household tasks (cleaning, fetching items, operating devices) using 

RGB-D input and language commands. Advances in language grounding have 

produced architectures where instructions (e.g., “find the recycling bin”) are 

embedded and combined with visual perception to produce actions. For example, 

PIGLeT (Zellers et al., EMNLP 2021) and ELLA (Majumdar et al., NeurIPS 

2022) demonstrate neural-symbolic models that translate language into sequences 

of robot-like actions in a 3D world. Open-vocabulary mobile manipulation 

research (Yu et al., 2023) shows agents can generalize to novel objects by 

leveraging pretrained models. Scene graph prediction (Khandelwal et al., ICCV 

2023) and object-centric representations help agents build detailed semantic maps 

of the home. These developments mean that an RL agent can flexibly interpret 

high-level commands (e.g., “clean up recyclables”) and recognize relevant objects 

without retraining. We leverage this body of work by assuming our home agent 

uses similar perception and grounding techniques. 

Green AI and Edge Deployment 

Concurrently, there is growing awareness of the environmental impact of 

AI itself. The concept of Green AI emphasizes designing AI systems that are 

energy-efficient and carbon-aware. Scholars like Schwartz et al. (2019) and Zhang 

et al. (2021) argue for minimizing the carbon footprint of training and inference, 

through techniques such as algorithmic efficiency, model compression, and 

renewable-powered computing. In our context, deploying RL agents in homes 

naturally leans toward Green AI: the agents run continuously to save energy, so 

their own energy use should be minimal. Thus, we envision using on-device 

(edge) inference on low-power hardware rather than cloud servers. Edge 

deployment also improves privacy, since data (e.g., camera feeds) need not leave 

the home. In summary, our framework is aligned with sustainable AI principles: 

it uses AI to reduce energy/waste and follows best practices to reduce the AI’s 

own energy cost. 

Spatial Adaptation for Sustainable Home Environments 

Spatial adaptation here means the RL agent’s ability to autonomously 

adjust home systems and resource use based on a rich understanding of the 3D 

space. Our approach targets two key domains: energy-saving control and 

household resource management. Figure 1 depicts the overall system 

architecture (sensor → 3D VLM → RL policy → actuation → feedback loop). The 

agent continuously perceives the home (rooms, appliances, windows, people) 

and uses a learned policy to execute sustainability-oriented actions. Below we 

outline concrete tasks that illustrate spatial adaptation. 



● Thermostat Optimization: The agent learns to adjust heating or 

cooling settings based on real-time occupancy (detected via the 3D camera) and 

forecasts. For example, if no one is in the bedroom, it lowers the thermostat 

setpoint; when occupants approach home from work, it pre-emptively raises it. 

The policy considers weather predictions and time-of-use energy prices to 

schedule heating cycles just in time. Over weeks of learning, the agent anticipates 

patterns (e.g., evening occupancy) and proactively optimizes settings to minimize 

HVAC energy while keeping occupants comfortable. 

● Appliance Management: By monitoring room usage, the agent 

identifies idle devices and powers them down. For instance, it might turn off lights 

or plug strips for electronics in unoccupied rooms. It can learn routines (e.g., 

coffee maker schedule) and ensure devices do not waste power. When the 3D 

VLM detects a person leaving a room, the agent can autonomously cut power to 

that room’s non-essential outlets, reducing phantom loads. 

● Window Blind Control: Leveraging ambient light and weather 

data, the agent controls blinds or curtains to regulate solar heat gain. On sunny 

winter days, it opens blinds to let sunlight warm the room; on hot summer 

afternoons, it closes them to reduce cooling load. By doing so, it maximizes use 

of natural light and heat, lowering the need for electric lighting and HVAC. 

● Water Conservation: The agent can monitor and provide 

feedback on water usage patterns (e.g., shower length, faucet flow). Using 

connected flow sensors, it could suggest shorter showers or recommend efficient 

washing machine cycles. If the home has indoor plants or irrigation, the agent 

might optimize watering schedules based on recent rainfall data. In this way, the 

agent extends its environmental intelligence beyond electricity to water savings. 

● Waste Sorting Assistance: With its 3D vision capability, the agent 

can learn to recognize recyclable and compostable items. It can guide users via 

voice or notifications on where to throw each type of waste. In the future, it could 

even manipulate objects (using a robot arm) to sort trash. By educating or 

physically assisting with recycling, the agent reduces landfill waste. For instance, 

it might detect a plastic bottle in the living room and prompt the user to place it in 

the recycling bin. 

● Sustainable Consumption Patterns: By analyzing usage data 

(e.g., daily electricity consumption logs) and user behavior, the agent can suggest 

greener habits. It might notice that certain devices are used during peak-priced 

hours and recommend shifting their use to off-peak times. It could also identify 

older, energy-inefficient appliances in inventory and alert the homeowner to 

consider replacements. Over time, these recommendations help residents adopt 

more sustainable lifestyles. 

 

Figure 3 conceptually illustrates the potential impact of these adaptations. 

In a hypothetical study, one would compare monthly energy consumption in three 

homes: (a) with no automation, (b) with simple rule-based automation, and (c) 

with our RL+VLM agent. Figure 3 depicts the RL-equipped home’s consumption 

dropping steadily as the agent learns, surpassing the incremental gains of the 



rule-based home. This exemplifies how continual learning yields compounding 

savings. 

 

 

Beyond immediate efficiency, the agent serves as an eco-assistant for the 

household. It not only automates actions but also educates and nudges occupants 

toward sustainability. For example, if the agent consistently restores the 

thermostat to an eco-friendly setpoint, residents may learn to value conservative 

heating. If it praises users for each correct recycling action (through a companion 

app), it reinforces positive habits. Over months, such feedback loops can instill 

eco-conscious behavior. In this way, intelligent spatial adaptation helps reduce 

each household’s environmental footprint and contributes to broader climate 

goals. 

Finally, our framework embraces Green AI principles. We aim to 

minimize the agent’s own computational footprint. Techniques like model 

compression and knowledge distillation will be used to shrink the policy network 

without loss of performance. The 3D VLM and policy can be optimized for 

efficient edge inference (e.g., running on a Raspberry Pi or home AI hub). We 

also consider the energy cost of training: where possible, agents are pre-trained in 

simulation and only fine-tuned (with online learning) in the real home. These 

measures ensure that the sustainability gains of the agent are not offset by 

excessive energy use in training or operation. 

 

Findings 

While promising, the RL+VLM approach faces several challenges and 

opens many avenues for future work: 

● Complexity of Home Environments: Homes are varied and 

cluttered. Agents must cope with diverse floor plans, objects, and user behaviors. 

Ensuring reliable perception (e.g., correctly identifying objects under occlusion) 

is non-trivial. Future work should explore robust vision models and transfer 

learning so agents can adapt to new homes with minimal retraining. 



● Safe and Reliable Interaction: Any agent that controls physical 

devices must be fail-safe. Misadjusting a thermostat or operating a device unsafely 

could harm occupants or property. We must incorporate safety constraints into the 

RL framework (e.g., hard bounds on actions). Rigorous simulation and staged 

deployment are needed before real-world trials. Privacy and security are also 

critical: continuous camera monitoring raises concerns, so architectures must 

safeguard data (e.g., by on-device processing and secure firmware). 

● Ethical and User-Centric Design: Automating home functions 

has social implications. Users may feel a loss of control if an AI overrides their 

preferences. It is essential to design the system for transparency and user override. 

For instance, the agent should explain its actions (“I turned off the AC because no 

one is home”). Incorporating user feedback into the learning loop can ensure the 

agent respects habits and comfort thresholds. Studies on human-AI interaction 

will be important to make these systems acceptable. 

● Computational Resources: Training advanced RL agents with 3D 

vision models can be computationally intensive. Research must focus on 

lightweight algorithms and hardware acceleration. Approaches like federated 

learning, where multiple homes share anonymized models, could reduce 

individual training costs. Additionally, new benchmarks are needed to evaluate 

energy use of these AI systems themselves (i.e., measure the carbon footprint of 

training and inference). 

Looking forward, several research avenues are promising: 

● Personalization: Agents should adapt to individual user 

preferences. Future work could integrate methods from preference learning so 

that, for example, the agent learns how warm or cool a user likes their bedroom to 

be. Personalization will improve user comfort and acceptance. 

● Expanded Sustainability Tasks: Beyond the examples above, 

agents could tackle broader goals. This includes managing home-grown food (e.g., 

minimizing kitchen waste), optimizing charging of electric vehicles during off-

peak hours, or coordinating with smart grid signals. Investigating such extensions 

will amplify environmental impact. 

● Multi-Agent Coordination: A single home may contain multiple 

agents (e.g., separate agents for heating, lighting, and appliances) or interact with 

external systems (energy grid, solar panels). Research into multi-agent RL could 

enable whole-home optimization. For example, agents could negotiate to shift 

loads between them or coordinate with neighbors’ systems to balance local 

renewable generation. 

● Long-Term Field Studies: Finally, it will be crucial to deploy 

prototypes in real households and measure outcomes over months or years. 

Questions to study include: How much do actual energy bills drop? Do occupants 

change their behavior? Are there rebound effects (e.g., saving on heating but using 

more appliances)? Longitudinal field trials will validate the theoretical benefits. 

In summary, RL-powered spatial adaptation presents a transformative 

vision for smart homes, but realizing it requires interdisciplinary advances in AI, 

human-computer interaction, and sustainability science. 

 



Conclusion 

Reinforcement learning agents integrated with 3D vision-language 

perception offer a powerful new paradigm for smart home automation. Unlike 

static rule-based controllers, these agents can learn from experience how to adjust 

household systems proactively to save energy and resources. By continuously 

interpreting occupancy, weather, and user routines, an RL+VLM agent can 

optimize thermostat settings, lighting, device usage, waste sorting, and more. The 

net effect is a smarter, greener home: energy consumption declines, waste is 

diverted from landfills, and residents receive gentle nudges toward eco-friendly 

habits. This approach embodies the principles of Green AI by using artificial 

intelligence to reduce ecological impact without imposing excessive 

computational costs. 

The potential benefits are significant. One analysis suggests that if an 

autonomous agent reduces HVAC energy use by even 10–20%, the resulting 

savings could translate to billions of kWh and millions of tons of CO₂ worldwide. 

Moreover, the same technology can improve comfort and convenience, 

accelerating user adoption. However, deploying these systems safely and ethically 

remains a challenge. Issues of privacy, trust, and equitable access must be 

addressed. 

Our paper has laid out the concept of spatial adaptation for sustainability: 

a conceptual framework describing how RL and 3D VLMs can transform home 

living. We have identified key tasks, highlighted enabling technologies, and 

discussed important challenges and research directions. The next step is to build 

working prototypes and field-test them. With continued advances in embodied AI 

and a focus on efficiency, RL-powered smart homes could become a cornerstone 

of a larger green transition. In the future, every household might host an intelligent 

agent acting as an eco-assistant, quietly optimizing our living spaces for the 

planet’s health. 
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ԲԱՆԱԿԱՆՈՒԹՅՈՒՆԻՑ ՄԻՆՉԵՎ ԱԶԴԵՑՈՒԹՅՈՒՆ. ՏՆԱՅԻՆ ԿԱՅՈՒՆ 

ՄԻՋԱՎԱՅՐԵՐՈՒՄ 3D VISION-LANGUAGE ՄՈԴԵԼՆԵՐՈՎ ՏԱՐԱԾԱԿԱՆ 

ՀԱՐՄԱՐՎՈՂԱԿԱՆՈՒԹՅՅՈՒՆԸ ՀԶՈՐԱՑՆՈՂ ՈՒՍՈՒՄՆԱԿԱՆ 

ԳՈՐԾԱԿԱԼՆԵՐ 

Վանգ ԳԱՈՆԳ 

Չժեցզյան համալսարան, Չինաստան 

Արեն ՄԽԻԹԱՐՅԱՆ 

Չժեցզյան համալսարան 

 

       Հոդվածում առաջարկում է օգտագործել զորակցող ուսուցման (RL) 

գործակալներ, որոնք ուժեղացված են 3D տեսողության լեզվի մոդելներով 

(VLM)՝ կայուն խելացի տներում օգտագործման հնարավորություն  համար: 



Այս գործակալները ընկալում են կենցաղային միջավայրի 3D 

դասավորությունը և առարկաները և սովորում են ինքնուրույն կարգավորել 

համակարգերը (օրինակ՝ HVAC, լուսավորություն, տեխնիկա) էներգիայի 

օգտագործումը և ռեսուրսների կառավարումը օպտիմալացնելու համար: 

Հոդվածում սահմանվել են էներգախնայողության հատուկ առաջադրանքներ 

(օրինակ՝ զբաղվածության վրա հիմնված թերմոստատի կառավարում, 

արդյունավետ լուսավորություն,  կույր կառավարում) և ռեսուրսների 

կառավարման առաջադրանքներ (օրինակ՝ թափոնների տեսակավորմանը 

նպաստում,  ջրի օգտագործման գծով հետադարձ կապի ապահովում), որոնք 

կարող են կատարել այդպիսի գործակալները: Մեկնաբանվել են RL-ի և 

տեսողության լեզվի մոդելների վերջին ձեռքբերումները՝ուրվագծելով  տնային 

գործակալների հայեցակարգային շրջանակը: Այս սինթեզի միջոցով 

ներկայացվել է, թե ինչպես RL-ով աշխատող գործակալները կարող են 

զգալիորեն նվազեցնել կենցաղային էներգիայի սպառումը և թափոնները՝ 

դրանով իսկ աջակցելով էկոլոգիապես մաքուր ապրելակերպին: 

Հետազոտությունում քննարկվել ենք այդ համակարգերի հնարավոր 

բնապահպանական և տնտեսական օգուտները, ինչպես նաև դրանց 

ընդունման տեխնիկական և սոցիալական մարտահրավերները: Հոդվածում 

կատարվել են առաջարկություններ «տարածական հարմարվողականության» 

համատեքստում1  կայուն զարգացման գծով, նպատակ ունենալով խելացի 

տները վերածելու է  կանաչ ապրելու միջավայրի: 

 

Հիմնաբառեր - ամրապնդող ուսուցում, տարածական հարմարվողակա-

նություն, 3D տեսլականի մոդելներ, խելացի տներ, կայունություն, կանաչ AI, 

խելացի գործակալներ 

 


